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1 INTRODUCTION
 

 
There is currently widespread interest in the development of radar sensors for the detection of surface and 
buried targets and the remote sensing of land, sea and ice surfaces. An important feature of electromagnetic 
radiation is its state of polarisation and a wide range of classification algorithms and inversion techniques 
have recently been developed based on the transformation of polarisation state by scattering objects. There 
are three primary ways in which multi-parameter radar measurements can be made: multi-frequency, single 
or multi-baseline interferometry and multi-polarization. While several airborne systems can now provide 
diversity over all three of these, it is the combination of polarimetry with interferometry at a single 
wavelength that forms the central focus of future challenges in developing new and original data processing. 
The main reason for this is the imminent launch of a series of advanced satellite radar systems such as 
PALSAR, an L-band SAR sensor on board the NASDA ALOS satellite and Radarsat II, a C-band 
polarimetric sensor. These are typical of a new generation of radars with the potential for providing data 
from various combinations of polarimetry and interferometry.  
 
This paper seeks to review recent progress in polarimetric and interferometric SAR data processing, covering 
advances and addressing the important topic of classification of polarimetric SAR data. Indeed, classification 
of Earth terrain components within a full polarimetric SAR image is one of the most important applications 
of Radar Polarimetry in Remote Sensing.  
 
However, the selection of radar frequency and polarization are two of the most important parameters in 
synthetic aperture radar (SAR) mission design. For a particular application, it is desirable to optimally select 
the frequency and combination of linear polarization channels, if a fully polarimetric SAR system is not 
possible, and to find out the expected loss in classification and geophysical parameter accuracy. In the first 
part of this tutorial, we quantitatively compare classification accuracies between fully polarimetric SAR data 
and partial polarimetric SAR data, for P-, L- and C-band frequencies. Additionally, to understand the 
importance of phase differences between polarizations, we compare the correct classification rates using the 
complex channels versus intensities channels. 
 
The second part of this lecture is dedicated to the presentation of different unsupervised classification 
methods that have been proposed during the last decade, based around the combination of the H / A / α 
Polarimetric Decomposition Theorem (S.R. Cloude and E. Pottier, 1997) and the maximum likelihood 
classifier based on the complex Wishart distribution for the covariance matrix (J.S. Lee et al., 1994). Unlike 
this approach classifies pixels statistically and ignores their scattering characteristics, a new segmentation 
that has better stability in convergence and preserves the homogeneous scattering mechanisms of each class 
and the purity of dominant polarimetric scattering properties for all pixels in a class will be presented and 
discussed (J.S. Lee et al., 2003). This algorithm uses a combination of a scattering model based 
decomposition developed by Freeman and Durden and the maximum likelihood classifier based on the 
complex Wishart distribution.  
 
Finally, an unsupervised classification process, gathering polarimetric and interferometric SAR data is 
presented. Data acquired in polarimetric and interferometric modes have complementary characteristics; 
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their joint use in a classification process provides significantly higher performance and the resulting images 
show significant improvements compared to the strictly polarimetric case (L. Ferro Famil et al., 2001). 

2 SUPERVISED POLARIMETRIC CLASSIFICATION 
 
The selection of radar frequency and polarization are two of the most important parameters in synthetic 
aperture radar (SAR) mission design. Of course, a multi-frequency fully polarimetric SAR system is highly 
desirable, but the limitations of payload, data rate, budget, required resolution, area of coverage, etc. 
frequently prevent multi-frequency fully polarimetric SAR from becoming a reality, especially in a space-
borne system. For a particular application, it is desirable to optimally select the frequency and combination 
of linear polarization channels, if a fully polarimetric SAR system is not possible, and to find out the 
expected loss in classification and geophysical parameter accuracy.  
 
In this section, we quantitatively compare crop and tree classification accuracies between fully polarimetric 
SAR and partial polarimetric SAR for P-, L- and C-band frequencies. Using polarimetric P-, L- and C-band 
data from NASA/JPL AIRSAR [VanZyl 1990], we quantitatively compare the correct classification rates of 
crops and tree ages for all combinations of polarizations. Additionally, to understand the importance of phase 
differences between polarizations, we compare the correct classification rates using the complex HH and VV 
versus using the two intensity images without their phase difference.  
 
The methodology introduced should have an impact on selecting the combinations of polarizations and 
frequency of a SAR for use in various applications. For example, the future C-band ENVISAT ASAR 
[Desnos 1999] system will have dual-polarization and single polarization/single polarization modes, and the 
C-band RADARSAT II [Meisl 2000] and L-band ALOS-PALSAR [Wakabayashi 1998] will also have the 
same modes for wider swatch selection, in additional to a fully polarimetric SAR mode. 
 
To quantitatively evaluate the classification capability for various combinations of polarization, a procedure 
must be carefully established:  

1. Optimal supervised classification algorithms developed from the same concept should be 
used for all combinations of polarizations 

2. Training sets have to be carefully selected from the available ground truth map 
3. The classification reference map to be used for the classification evaluation must be 

reasonable and consistent with the ground truth map and polarimetric SAR data. 
 

Comparison of classification accuracies between fully polarimetric, dual polarization and single polarization 
SAR data have been evaluated for P-band, L-band and C-band using two JPL AIRSAR data sets: Flevoland 
for crops and Les Landes for tree ages. The availability of these multi-frequency polarimetric SAR data 
enables us to quantitatively compare classification capabilities of all combinations of polarizations for three 
frequencies. Furthermore, we have ground truth maps for both scenes that facilitate the selections of training 
sets and reference maps. 
 
2.1 THE SUPERVISED WISHART CLASSIFIER 
 
The presented supervised algorithm, is a maximum likelihood classifier based on the complex Wishart 
distribution for the polarimetric coherency matrix, given by: 
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Each class is characterized by its own coherency matrix [Tm] which is estimated using training samples from 
the mth class : ωm. According to the Bayes maximum likelihood classification procedure [Lee 1994b], an 
averaged coherency matrix <[T]> is assigned to the class ωm, if : 
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This relation shows that if the number of look (L) increases, the a priori probability [ ]( )P Tm  of the class ωm 
does not play a significant role for the classification. It is generally assumed that without a priori knowledge, 

the different [ ]( )P Tm  are equal, in which case the distance measure is not a function of the number of look 
(L). Usually, to implement the classification, the coherency matrix [Tm] is estimated using pixels within 
different selected areas of the mth class, and data is then classified pixel by pixel. These different training sets 
have to be selected in advance. For each pixel, represented by the averaged coherency matrix <[T]>, the 
distance [ ]( )Tdm  is computed for each class, and the class associated to the minimum distance is assigned to 
the pixel. During the procedure, each feature coherency matrix [Tm] is iteratively updated from the initial 
estimate. The algorithm of this iterative procedure, similar to the k-mean method, is given as follows [Lee 
1994b] : 
 
 1 : Provide an initial [Tm](0) as an initial guess for each class (k=0) 
 2 : Classify the whole image using the distance measure procedure 
 3 : Compute [Tm](k+1) for each class using the classified pixels of step 2 
 4 : Return to step 2, until a termination criterion defined by the user is met. 
 
This procedure based on a distance measure, is simple and easy to apply. In addition, this algorithm based on 
the Wishart distribution, uses the full polarimetric information. 
 

2.1.1 FULLY POLARIMETRIC SAR DATA CLASSIFIER 
 
For terrain or land-use classification, a distance measure [Lee 1994b] was derived based on the maximum 
likelihood classifier (3) and the complex Wishart distribution (1),  
 
 [ ]( ) [ ] [ ]( ) [ ]( )m

1
mm TlnTTTrTd += −  (4) 

 
where [ ] [ ]mm |TET ω=  is the mean covariance matrix for class mω . It is important to note that this distance 
measure is independent of the number of looks. Consequently, it can be applied to single-look, multi-look 
and polarimetric speckle filtered complex data. For supervised classification, training sets are required to 
estimate [ ]mT  for each class. The distance measure is then applied to classify each pixel. 
 

2.1.2 MULTI-FREQUENCY FULLY POLARIMETRIC SAR DATA CLASSIFIER 
 
Based on the assumption that speckle is statistically independent between frequency bands, the distance 
measure (31) can be generalized for the classification using combined multi-frequency polarimetric SAR 
data [Lee 1994b], 
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where J is the total number of bands, [ ])j(Tm  is the feature covariance, and [ ])j(T  is the covariance matrix, 

for the thj  frequency band. 
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2.1.3 DUAL POLARIZATION COMPLEX SAR DATA CLASSIFIER 
 
The distribution functions for dual polarization (HH, VH), (HV, VV) or (HH, VV) can be derived from the 
complex Wishart distribution. For example, if only complex HH and VV are available, p=2, and for single 
polarization, p=1, which reduces (1) to the Chi-square distribution with 2L degree of freedom.  
 
For classification of dual polarization complex SAR data (HH, VH), (HV, VV) or (HH, VV), the same 
distance measure (3), with [ ]mT  and [ ]T  accordingly defined as 2x2 matrices, is used for maximum 
likelihood classification [Lee 1995]. 
 

2.1.4 DUAL INTENSITIES SAR DATA CLASSIFIER 
 
For the dual polarization case without phase difference information (|HH|, |VV|), the probability density 
function has been derived [Lee 1994a]. Letting >=< 2

HH1 SR and >=< 2
VV2 SR , we have: 
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(6) 
 
where ( )nI  is the modified Bessel function of the nth order, [ ]111 REC =  and [ ]222 REC = .  
In the absence of phase difference data, the classification is based only on the intensities. The magnitude of 
the complex correlation coefficient || cρ  of (6) can be derived from two intensity images [Lee 1994a]. For 
each class, 11C , 22C  and || cρ are computed in a training area. A distance measure can be derived from (6), 
but this does not provide a computational advantage. Consequently, the maximum likelihood classifier is 
applied directly to the probability density function (6). 
 

2.1.5 SINGLE INTENSITY SAR DATA CLASSIFIER 
 
The single polarization intensity SAR data can be described by the same Wishart distribution with q=1. 
Letting >=< 2

11 SR  and [ ]111 REC = , the distance measure for the single polarization SAR data 
becomes: 
 ( ) 111111m C/RClnRd +=  (7) 
 
2.2 CLASSIFICATION PROCEDURE 
 
Ground truth maps often do not show sufficient detail for a fair evaluation of classification capabilities. 
Training sets have to be carefully selected from the ground truth map. Pixels in training sets are then used for 
all supervised classifications. To evaluate classification accuracy, the training sets may be used as the 
reference class map, if each training set contains a sufficient number of pixels to obtain statistically 
significant results.  
 
Otherwise, a reference class map may be established using the classification map from combined multi-
frequency polarimetric SAR data. More detail will be given in the section of forest age classification. The 
basic classification procedure is listed as follows: 
 

1. Select training sets from a ground truth map 
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2. Filter polarimetric SAR data using the polarimetric property preserving filter [Lee 1999a] to reduce 
the effect of speckle on the classification evaluation. 

3. Apply maximum likelihood classifiers to 
a. Each individual polarization, |HH|2, |VV|2 and |HV|2, for all three bands. 
b. Combinations of dual polarizations without the phase differences, (|HH|2, |VV|2), (|HH|2, 

|HV|2) and (|HV|2, |VV|2). 
c. Combinations of dual polarization complex data with phase differences, complex (HH, VV), 

(HH, HV) and (HV, VV). 
d. P-band, L-band or C-band fully polarimetric data. 
e. Combined P-, L-, and C-band fully polarimetric data. 

4. Compute the correct classification rates based on the reference map. 
 
2.3 COMPARISON OF CROP CLASSIFICATION 
 
The JPL P-,L-, and C-band polarimetric SAR data of Flevoland (Netherlands) is used for this crop 
classification study. The color image shown in Fig. 1a is an L-band image with color composed by Pauli 
matrix representation. Contrasting patches of agriculture field reveal the capability of L-band polarimetric 
SAR to characterize crops. C-band and P-band do not have as such contrast between fields as L-band. The 
original ground truth map is shown in Fig. 1b. A total of 11 classes are identified, consisting of 8 crop classes 
from stem beans to wheat, and three other classes of bare soil, water and forest. To obtain refined training 
sets, the ground truth map was modified by eliminating the roads and all border pixels. The refined map 
shown in Fig. 1c was then co-registered with SAR image, and used for training and for computing 
classification accuracies. The color coded class label is given in Fig. 1d. 
 

(a) Original L-band image (b) Original ground truth map 

 

(c) Training sets and reference map (d) Class Label 
 

Fig. 1: L-band polarimetric SAR image of Flevoland, France,  
and its ground truth map for crop classification 
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The Flevoland data were originally processed with 4-look average in Stokes matrix. All three bands of 
polarimetric data were speckle filtered by applying the polarimetric property preserving filter [Lee 1999a]. 
The discussion on these classification results measured against the crop reference map are discussed in the 
following. 
 

2.3.1 FULLY POLARIMETRIC CROP CLASSIFICATION RESULTS 
 
Using fully polarimetric SAR data, the classification results are shown in Fig. 2. The class are coded with the 
color of Fig. 1d. The L-band has the best total correct classification rate of 81.65%, shown in Fig. 2b; P-band 
is the next with 71.37% shown in Fig. 2c; C-band is the worst with 66.53%, shown in Fig. 2a. L-band radar, 
with wavelength of 24 cm, has the proper amount of penetration power, producing better distinguished 
scattering characteristics between classes. C-band does not have enough penetration, while P-band has too 
much penetration. When all three bands are used for the classification, the correct classification rate 
increases to 91.21%, as shown in Fig. 2d. It is apparent that multi-frequency fully polarimetric SAR is highly 
desirable. 
 

(a) C-band fully polarimetric classification (b) L-band fully polarimetric classification 

(c) P-band fully polarimetric classification (d) Combined P-L- C-band fully polarimetric 
classification 

 
Fig. 2: Comparisons of fully polarimetric SAR crop classification results 
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2.3.2 DUAL POLARIZATION CROP CLASSIFICATION RESULTS 
 
Correct classification rates for combinations of two polarization images with and without phase differences 
were calculated. Since correlation between co-polarization HH and VV is higher than between cross-
polarization and co-polarization, we found that the phase difference between HH and VV is an important 
factor for crop classification. Fig. 3a shows L-band classification result using the complex HH and VV. Fig. 
3b shows the result using HH and VV intensities only. The total correct classification rate of complex HH 
and VV at 80.91% is only slightly inferior to that using fully polarimetric data. However, when the phase 
difference is not included in the classification the rate drops to 56.35%. This is mainly because the 
penetration depth of HH and VV are different for the crops under consideration.  
 
The difference in phase centers between HH and VV generates important discriminating signatures in phase 
differences shown in Fig. 3c. Fig. 3d shows histograms of phase difference for each class. It reveals that all 
classes, except stem beans and the forest, have their phase difference highly concentrated near peaks, and the 
peaks do not coincide. In particular, the class of stem beans and forest have peaks located at roughly -π/2 and 
π/4 respectively, indicating that they are easily separated by phase differences.  
 
 
 

(a) L-band complex HH and VV classification (b) L-band |HH|2 and |VV|2 classification 

 
(c) Phase differences between HH and VV (d) Histograms of phase difference for each class 

 
Fig. 3: Comparison of dual polarization crop classification with and without phase difference information. 

 
The phase differences between co-polarization terms and cross-polarization terms are not as important as that 
between HH and VV, because co-polarization and cross-polarization terms are generally uncorrelated in 
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distributed targets. The classification results reflect this characteristic. The L-band Complex VV and HV 
with correct classification rate of 64.72% is only slightly better than for the intensities with a rate of 60.12%. 
 
The results of P-band are similar except with lower overall classification rates. The total classification rate 
for complex HH and VV is 69.25%, and 59.37% for HH and VV intensities. The classification rates for the 
forest class for P-band are much better than L-band and C-band, but are very poor in classifying the grass 
class. These results are expected, because P-band has higher penetration power. The overall classification 
rates for C-band are not as good. The phase difference between HH and VV is also important in C-band 
classification, but the classification rate for forest is inferior to L-band and P-band, except that the grass class 
is better. 

2.3.3 SINGLE POLARIZATION DATA CROP CLASSIFICATION RESULTS 
 
The classification accuracies for single polarization data, as expected, are much worse than those from two 
polarizations. For L-band and C-band, the cross polarization HV has the highest rate, but for P-band, VV has 
the best rate. 
 
2.4 COMPARISON OF TREE AGE CLASSIFICATION 
 
The JPL P-,L-, and C-band polarimetric SAR data of Les Landes (France) is used for this tree age 
classification study. The scene contains bare soil areas and many homogeneous forested areas of maritime 
pines. Six tree-age groups are included from 5-8 years to more than 41 years of age. A P-band color 
composed image with red for |HH|, Green for |HV| and blue for |VV| is shown in Fig. 4a. The available 
ground truth map, a courtesy of Dr. Thuy Le Toan (CESBIO), is shown in Fig. 4b. A comparison of Fig. 4a 
and 4b reveals the backscattering coefficients increasing roughly with tree ages. 
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(a) P-band HH(Red), HV(Green) and VV(Blue) (b) Ground Truth Map 
Courtesy of Dr. Thuy Le Toan (CESBIO). 

 

 

 

(c) Training set (d) Color coded classification label 
 

Fig. 4: P-band polarimetric SAR image of Les Landes, France,  
and its ground truth map for tree age classification 

 
The ground truth map is not sufficiently detailed, and inhomogeneous areas, which are revealed in 
polarimetric SAR images, are not shown in the map. These discrepancies forced us to select other means to 
create a tree class reference map for the evaluation of classification accuracy. The procedure involves careful 
selection of the smaller training sets shown in Fig. 4c. It has been shown in our crop classification and by 
others [Cloude 1997] that classification based on all three bands (P-, L- and C-band) of polarimetric data has 
the highest classification rate. Consequently, the combined P-, L-, and C-band classification map is used as 
the reference map for computing classification accuracies. The color coded class label is shown in Fig. 4d. 
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2.4.1 FULLY POLARIMETRIC TREE AGE CLASSIFICATION RESULTS 
 
The classification results using fully polarimetric SAR data are shown in Fig. 5a for C-band, 11b for L-band, 
and 11c for P-band. For comparison, the classification result using three bands simultaneously is shown in 
Fig. 5d. It shows a good agreement with the parcel distribution given by the ground truth map of Fig. 4b. As 
expected, P-band data has much higher overall correct classification rate at 79.16% than L-band at 64.67%. 
C-band at 42.96% is not acceptable for forest classification.  
 

(a) C-Band fully polarimetric classification (b) L-Band fully polarimetric classification 

(c) P-Band fully polarimetric classification (d) Combined P-L-C-Band fully polarimetric 
classification 

Fig. 5: Comparisons of fully polarimetric tree age classifications 
 

All three bands can separate bare soil from trees. For forest, however, the scattering mechanisms from trees 
are much more complex [Durden 1999]. Leaves, branches, trunks and the ground create volumetric 
scatterings of single bounce, double bounces, and multiple bounces, especially in P-band. The L-band has 
less penetration than P-band, and its backscattered signal tends to saturate in older tree parcels. For C-band, 
the dominating scattering is mainly from tree tops, resulting in poor discriminating for tree ages. 

2.4.2 DUAL POLARIZATION TREE AGE CLASSIFICATION RESULTS 
 
For P-band, the combination of HH and HV performs better than HH and VV as shown in Fig. 6. Phase 
differences are less influential on the classification, because scattering mechanisms in tree areas are very 
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random. Consequently, phase differences between polarizations are very noisy. The overall classification 
accuracy for complex HH and VV of 68.56% is very close to that for HH and VV intensities of 65.30%. This 
difference is much less than that from crop classification. The complex HH and HV classification accuracy is 
much higher at 75.95, and the HH and HV intensities is at 75.44%. The difference between using and not 
using phases is negligible for all three dual polarization modes. We also notice that the use of HH and HV 
can achieve results nearly as good as that of fully polarimetric SAR. This is because the contribution of HV 
polarization to tree age classification is the most significant. Classification for L-band is similar but 
somewhat inferior. The performance of C-band are much worse due to the inadequate penetration of its 
shorter wavelength.  
 

(a) P-band complex HH and VV (b) P-band HH and VV intensity (without phase) 

(c) P-band complex HH and HV (d) P-band HH and HV intensities (without phase) 
Fig. 6: Comparisons of dual polarization tree age classifications. 

2.4.3 SINGLE POLARIZATION TREE AGE CLASSIFICATION 
 
The overall tree age classification accuracies for single polarization are much better than those for crop 
classification. P-band HV has the overall classification rate of 68.88%, HH of 58.31%, and VV of 53.89%. 
Classification rates for single polarization are very close to those for dual polarization for all three bands. It 
indicates that highly correlated radar returns between polarizations.  
 
Applying target decomposition of Cloude and Pottier [Cloude 1996], to fully polarimetric SAR images, we 
found that the entropy are very high for all forest areas, revealing random scattering mechanisms. In other 
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words, the backscattered signals are very depolarized; the polarization effect is less significant. Cross-
polarization HV produces better classification results than HH and VV, because the volumetric scattering in 
forest areas enhances the cross-polarization returns.  
 
2.5 CONCLUSION 
 
A procedure has been developed to quantitatively evaluate the classification capabilities for fully 
polarimetric, combinations of dual polarization and single polarization SAR. Quantitative comparison has 
been made for crop and forest age classifications for P-band, L-band and C-band frequencies. The fully 
polarimetric and partially polarimetric classification algorithms are developed based on the principle of 
maximum likelihood classifier. All probability densities functions are derived from the complex Wishart 
distribution under the circular Gaussian assumption for single look complex polarimetric data. These optimal 
classifiers, developed on the same foundation ensure a fair comparison of classification capabilities. 
 
We found that L-band fully polarimetric SAR data are best for crop classification, but P-band is best for 
forest age classification, because longer wavelength electromagnetic waves provides higher penetration. For 
dual polarization classification, the HH and VV phase difference is important for crop classification, but less 
important for tree age classification.  
 
For crop classification, it is clear that the combination of HH and VV polarization is preferred, if fully 
polarimetric data is not available. The contribution of co-polarization phase differences to classification is 
highly significant. The classification results using P-band and C-band data are inferior to those using L-band. 
Also, for crop classification, the L-band complex HH and VV can achieve correct classification rates almost 
as good as for full polarimetric SAR data, and for forest age classification, P-band HH and HV should be 
used in the absence of fully polarimetric data.  
 
In all cases, we have demonstrated that multi-frequency fully polarimetric SAR is highly desirable. The 
methodology introduced in this section should have an impact on the selection of polarizations and 
frequencies in current and future SAR systems for various applications. 
 

3 UNSUPERVISED POLARIMETRIC CLASSIFICATION 
 
Classification of Earth terrain types within a fully polarimetric SAR image is one of the many important 
applications of radar polarimetry. Several algorithms have recently been developed for the classification of 
land features based on their polarimetric microwave signatures. These methods exploit observed similarities 
and correlation in feature vectors derived mainly from complete coherent scattering matrix data. Most of 
these techniques are supervised, in the sense that the feature vector is derived from measurements over 
known terrain classes. Unknown pixels are then compared with the training set, and a statistical decision is 
made as to class membership. When the ground truth is not available, it is often difficult to select significant 
training sets. Several unsupervised techniques have also been developed. They tend to be more physically 
based and have the advantage that their performance is not data specific, as often arises with supervised 
methods. These methods tend to classify automatically the SAR image by finding clusters following a given 
strategy. Different unsupervised polarimetric classification procedures are outlined and discussed in this 
section. 
 
3.1 UNSUPERVISED IDENTIFICATION OF A POLARIMETRIC SCATTERING MECHANISM  
 
An unsupervised classification scheme has been introduced [Cloude 1997], based on the use of the two-
dimensional H / α classification plane, where all random scattering mechanisms can be represented. The key 
idea is that entropy arises as a natural measure of the inherent reversibility of the scattering data and that the 
alpha angle (α) can be used to identify the underlying average scattering mechanisms.  
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This classification plane is sub-divided into nine basic zones characteristic of classes of different scattering 
behavior. It is important to note that the absolute magnitude of the eigenvalues were not taken into account. 
This simple classification procedure was just based on the comparison to fixed thresholds of the polarimetric 
properties of the different scattering mechanisms. The different class boundaries, in the H-α  plane, have 
been determined so as to discriminate surface reflection (SR), volume diffusion (VD) and double bounce 
reflection (DB) along the α  axis and low, medium and high degree of randomness along the entropy axis. 
Detailed explanations, examples and comments concerning the different classes can be found in [Cloude 
1997]. Fig. 7 shows the H-α  plane and the occurrence of the studied polarimetric data into this plane.  
 

  

Fig. 7: Polarimetric data occurrence in the H-α  plane. 
San Francisco Bay (Left) and Oberpfaffenhofen (right). 

 
It can be seen, in Fig. 7, that the largest densities in the two occurrence planes correspond to volume 
diffusion and double bounce scattering with moderate and high randomness. Medium and low entropy 
surface scattering mechanisms are also frequently encountered in the two scenes under examination. Data 
distribution in the H-α  plane show that identification results may highly depend on segmentation thresholds. 
Results of this simple unsupervised identification procedure are presented in Fig. 8. 
 
It can be observed in Fig. 8 that the proposed segmentation in the H / α plane permits to identify in a 
macroscopic way the type of scattering mechanism. Sea surface or agricultural fields and bare soils are 
characterized by surface scattering. Scattering over forested areas is dominated by volume diffusion while 
urban areas are mainly characterized by double bounce scattering. It may be noted that the identification 
process slightly overestimates volume diffusion and double bounce scattering over surfaces.  
 
The particularity of this identification procedure resides in the estimation of the type of observed media from 
a physical interpretation of canonical scattering mechanisms using robust indicators. Nevertheless, the 
analysis of natural scenes using this unsupervised approach may reach some limitations: 

• The arbitrarily fixed linear decision boundaries in the H / α  plane may not fit data distribution. A 
natural cluster corresponding to similar targets may lie across a frontier in the decision plane. In this 
case, pixels with very similar characteristics may be assigned, in an almost random way, to different 
classes due slightly different locations in the H / α  plane. This effect can be observed in Fig. 8 
where the variability in natural media polarimetric features lead to noisy classification results. 

• Even if the computation of H and α  requires fully polarimetric data, these two parameters do not 
represent the whole polarimetric information. The use of other indicators such as the span or specific 
correlations coefficients may improve the classification results in a significant way. 
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Fig. 8: Unsupervised scattering mechanism identification in the H / α plane 

San Francisco Bay (left) and Oberfaffenhofen (right) 
 
Segmentation procedures based on the whole coherency matrix statistics permit to overcome the limitations 
mentioned above. Nevertheless, it is shown in the following, that the physical interpretation of the scattering 
phenomenon permits to enhance in a significant way the performance of statistical segmentation schemes.  
 

3.1.1 THE COMBINED H / α - WISHART CLASSIFICATION 
 
In 1994, J.S. Lee et al. [Lee 1994a] developed a supervised algorithm based on the complex Wishart 
distribution for the polarimetric covariance matrix. This algorithm is statistically optimal in that it maximizes 
the probability density function of pixels’ covariance matrices. However, as for all supervised methods, 
training sets have to be selected in advance. These training sets, selected in advance, require from the user an 
a priori knowledge of the different significative Earth terrain components which can be found in the 
POLSAR image. 
 
In 1998, J.S. Lee et al. [Lee 1999b] proposed an unsupervised classification method that uses the two-
dimensional H / α classification plane to initially classify the polarimetric SAR image. The initial 
classification map defines training sets for classification based on the Wishart distribution. The classified 
results are then used as training sets for the next iteration using the Wishart method. Significant improvement 
in each iteration has been observed, and the analysis of the final class centers in the two-dimensional H / α 
classification plane are useful for interpretation of terrain types. 
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The polarimetric H / α segmented image is used as training sets for the initialization of the supervised 
Wishart classifier. The cluster centers of the coherency matrices, [Tm], is computed for each zone, with : 
 

 [ ] [ ]T
N

Tm
m

k
k

k N m

=
=

=

∑1
1

  (8) 

 
where Nm is the number of pixels in the a priori class ωm. Each pixel in the whole image is then reclassified 
by applying the distance measure procedure. The reclassified image is then used to update the [Tm], and the 
image is then again classified by applying the same distance measure procedure. 
 
To classify similar objects in the same image, which can have different orientation angles, the orientation 
dependence is removed from the coherency matrix during the Wishart classification. The classification 
procedure stops when a termination criterion, defined by the user, is met. The termination criterion we used 
is the number of iterations and is here equal to 4. In this case, the ratio of pixels switching class with respect 
to the total pixel number is smaller than 10%. Classification results are shown on Fig. 9 with the 
corresponding color coded distribution of the data in the two-dimensional H / α. 
 

  

 
 

Fig. 9: Classification result after 4 iterations 
San Francisco Bay (left) and Oberfaffenhofen (right) 

 
An important improvement in the segmentation accuracy can be observed in the two images presented in Fig. 
9. The main kinds of natural media are clearly discriminated by the Wishart H-α  segmentation scheme. This 
unsupervised classification algorithm modifies the decision boundaries in an adaptive way to better fit the 
natural distribution of the scattering mechanisms and takes into account information related to the back-
scattered power. 
 
However, the identification of the terrain type directly from the analysis of the classified image may cause 
some confusion, due to the color scheme [Lee 1999b]. Indeed, during the classification, the cluster centers in 
the two-dimensional H / α plane can move out of their zones, or several clusters may end in the same zone 
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[Lee 1999b]. This is due to the fact that the zone boundaries were set somewhat arbitrarily as mentioned 
previously. It is thus necessary to study the final H / α location of each class to identify the terrain type, and 
to interpret the scattering mechanisms. 
 

3.1.2 THE COMBINED H / A / α - WISHART CLASSIFICATION 
 
In order to improve the capability to distinguish between different classes whose cluster centers end in the 
same zone, the combined Wishart classifier is extended and complemented with the introduction of the 
anisotropy (A) information. 
 
The original method we proposed, consists in comparing the anisotropy value of all the pixels to ½. This 
comparison procedure leads to the definition of an « equivalent » projection of the three-dimensional H / A / 
α space in two complemented H / α planes, as shown on Fig. 10, where is represented the POLSAR data 
distribution of the San Francisco bay. The color coding associated to the first 8 classes is retained and 8 new 
colors are introduced. 
 

  
 

Fig. 10a : Distribution of the San-Francisco 
POLSAR data in the two-dimensional H / α  

plane corresponding to A < ½. 

Fig. 10b : Distribution of the San-Francisco 
POLSAR data in the two-dimensional H / α  

plane corresponding to A > ½. 
 
From the analysis of these two complemented H / α planes, it is thus possible to define four main areas (A1 
... A4), each of them gathering several zones (Zi), leading to the following interpretation : 
 1) - Area 1 (A1) corresponds to the zones where occurs one single scattering mechanism. This is 
equivalent to the (1-H)(1-A) image. 
 2) - Area 2 (A2) corresponds to the zones where occurs three scattering mechanisms. This is 
equivalent to the H(1-A) image. 
 3) - Area 3 (A3) and Area 4 (A4) correspond to the zones where occur two scattering mechanisms. 
These are equivalent respectively to the (1-H)A and HA images. 
 
Among the different approaches tested, the best way to introduce the anisotropy information in the 
classification procedure consists in implementing two successive combined Wishart classifiers. The first one 
is identical to the previous one. Once the first classification procedure has met its termination criterion, the 
anisotropy comparison for all the pixels, is then introduced, which leads to the definition of 16 new training 
sets used for the initialization of the second Wishart classifier. 
 

A1 A2 A4 A3 
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Fig. 11: Synopsis of the Wishart H-A-α  segmentation procedure 

 
The entire unsupervised Wishart classification procedure is as follows : 
 1 : Apply target decomposition to compute the entropy H and α. 
 2 : First initial classification of the image into 8 classes by zone in the two- 
  dimensional H / α plane. 
 3 : For each class, compute the initial cluster center [Tm](0) (k=iteration number  
  and m=1..8) 
 4 : Classify the whole image using the distance measure procedure 
 5 : Compute [Tm](k+1) for each class using the classified pixels of step 4 
 6 : Return to step 4, until a termination criterion defined by the user is met. 
 7 : Apply target decomposition to compute the anisotropy A. 
 8 : Second initial classification of the image into 16 classes by zone in the  
  projected three-dimensional H / A / α space, with : 
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 9 : For each class, compute the new initial cluster center [Tm](0) (k=iteration 
  number and m=1..16) 
 10 : Classify the whole image using the distance measure procedure 
 11 : Compute [Tm](k+1) for each class using the classified pixels of step 10 
 12 : Return to step 10, until a termination criterion defined by the user is met. 
 
To compare with the previous procedure, we kept the same termination criterion. The classification results 
are shown on Fig. 12. 
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Fig. 12: Classification result after 4 iterations 
San Francisco Bay (left) and Oberfaffenhofen (right) 

 
 
Improvements in classification and details are observed. Grass fields are much better defined, and more 
details are shown both in city blocks and in ocean. Some classes, indistinguishable in the classification based 
on entropy (H) and alpha angle (α) are now clearly visible with the introduction of the anisotropy 
information. It is also possible to discriminate different areas, belonging to the same scattering type (same 
entropy H and alpha angle) but differentiated with the associated anisotropy information which is there 
significative of the presence of several scattering mechanism types. 
 
The analysis of the final cluster centers in the three-dimensional H / A / α classification space will provide a 
more precise interpretation of the different classes of terrain types. 
 
The segmentation results presented in Fig. 12 show an enhanced description of the Oberpfaffenhofen scene. 
The introduction of the anisotropy in the clustering process permits to split large segments into smaller 
clusters discriminating small disparities in a refined way.  
 
Several kinds of agricultural fields are separated. The runway and other low intensity targets are 
distinguished from other surfaces. Buildings are discriminated from other types of scatterers present in urban 
areas. The Wishart H-A-α  classification scheme gathers into segments pixels with similar statistical 
properties, but does not provide any information concerning the nature of the scattering mechanism 
associated to each cluster.  
 
The unsupervised classification results show a good discrimination of the three basic scattering mechanisms 
over the scene under consideration. Forested areas are well separated from the rest of the scene. Buildings, 
characterized by double bounce scattering, can be distinguished over the urban area and the DLR. It may be 
noted that the identification assigns some buildings to the volume diffusion class. The polarimetric properties 
as well as the power related information do not permit to separate these targets form forests. Such buildings 
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have specific orientations with respect to the radar and particularly rough roofs and back-scatter randomly 
polarized waves.  
 
The information contained in the three roll-invariant parameters extracted from the local estimate of the 3x3 
hermitian coherency matrix <[T]>, corresponds to the type of scattering process which occurs inside the 
pixel to be classified (combination of entropy H and anisotropy A) and to the corresponding physical 
scattering mechanism (α parameter). 
 
From the analysis of the three-dimensional H / A / α classification space, we have shown that the anisotropy 
can be considered now as a key parameter in the polarimetric analysis and/or inversion of POLSAR data. 
The analysis of the final cluster centers in the H / A / α classification space is useful for class identification 
of the different scattering mechanisms which occur in the classified SAR image. The introduction of the 
anisotropy information improves the capability to distinguish between different classes whose cluster centers 
end in the same H / α zone. 
 

3.1.3 BASIC IDENTIFICATION OF CANONICAL SCATTERING MECHANISMS 
 
An efficient estimation of the nature of scattering mechanisms over natural scenes can be achieved by 
gathering results obtained from the polarimetric decomposition and segmentation procedures presented 
previously. The identification of the polarimetric properties of compactly segmented clusters permits, by 
analyzing groups of scatterers, to reduce the influence of the variability of polarimetric indicators 
encountered over natural media. The estimation of global properties provides an accurate interpretation of 
the observed scene nature and structure. Volume diffusion and double bounce scattering were found to be 
over-estimated during the identification of scattering mechanisms using the H / α segmented plane. One of 
the reasons of this over-estimation resides in the calculation of the average parameters of the polarimetric 
decomposition. In some cases, the expansion of a coherency results a dominant scattering mechanism and 
secondary mechanism showing very different polarimetric properties.  
 
The calculation of average indicators as the weighted sum of the indicators of each element of the expansion 
may then lead to an erroneous interpretation of the nature of the scattering mechanism. Recently, a new 
identification approach was proposed [Ferro-Famil 2002] and based on the discrimination, from the H / A 
plane, of the number of significant mechanisms occurring in each pixel of the POLSAR image. The relevant 
mechanisms selection and identification to canonical scattering mechanisms results are shown in Fig. 13.  
 

 

 ODD VOL DBL 
 

Fig. 13: Selection of significant mechanisms and identification to canonical scattering mechanisms 
(ODD: Single Bounce Scattering, DBL: Double Bounce Scattering, VOL: Volume Diffusion) 
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This simple and basic identification procedure shows a good discrimination of the three basic scattering 
mechanisms over the scene under consideration. Forested areas are well separated from the rest of the scene. 
Buildings, characterised by double bounce scattering, can be distinguished over the urban area and the DLR 
Institute. It may be noted that the identification assigns some buildings to the volume diffusion class. The 
polarimetric properties as well as the power related information do not permit to separate these targets form 
forests. Such buildings, with particularly rough roofs, present specific orientations with respect to the radar 
line of sight that may cause a random backscattering effect. This limitation can be solved when applying to 
each canonical scattering mechanism, an unsupervised classification process gathering polarimetric and 
interferometric results [Ferro-Famil 2002].  
 
This new approach shows significant improvements compared to the strictly polarimetric case. Clear-cuts 
sparse and dense forests are separated according to their coherent properties and, particular buildings having 
a polarimetric behaviour similar to forest are then discriminated.  
 
Indeed, interferometric data provide information concerning the coherence of the scattering mechanisms and 
can be used to retrieve observed media structures and complexity [Cloude 1998, Papathanassiou 2001]. An 
example of the complementary aspect of polarimetric and interferometric information is given on Fig. 14 
with polarimetric interferometric data acquired by the DLR E-SAR sensor at L band in repeat-pass mode 
with a baseline of 10m. 
 

 
Fig. 14: Optical image (left), polarimetric color coded image (center) and  

interferometric coherence (right) over Oberpfaffenhofen (Germany) 
 
It can be observed from a careful study of [Papathanassiou 1999] that, in general, forests have a uniform 
polarimetric behaviour while the interferometric coherence shows large variations. On the other hand, some 
surfaces have similarly high interferometric coherence while the polarimetric image depicts different 
scattering mechanisms.  
 

3.2 POLARIMETRIC INTERFEROMETRIC SAR DATA ANALYSIS 
 
One of the very latest developments has addressed Polarimetric Radar Interferometry, which is now a mature 
technology for remote sensing since airborne sensors are now capable of reliable repeat-pass interferometric 
measurements. Radar Interferometry was developed initially as a technique for measuring surface 
topography. Here the interferometric phase is the key radar observable and this phase can be simply related, 
through the geometry of the sensor, to the local elevation of a scattering point above a reference plane. To a 
first approximation it can be assumed that the speckle phase for the two signals at either end of the baseline 
is strongly correlated, and a deterministic phase signal, related to the topography, can then be extracted from 
the phase difference. In these early studies any residual phase variance was perceived primarily as a 
nuisance, acting to reduce the accuracy of the terrain elevation model [Bamler 1998]. However, it was 
quickly realized that the local phase variance or a closely related parameter, the interferometric coherence, 
contains information about the scattering mechanisms on the surface. This realization arose following a 
decomposition of the complex coherence into a product of terms, most of which are related to system 
bandwidth and geometry effects but one of which, the volume de-correlation, contains important information 
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on penetration depth in vegetation, ice and ground applications. This had two important consequences for the 
development of interferometric methods in remote sensing:  

 
1. the change of coherence over vegetated areas provides a means for scene classification based on 

vegetation cover. It was also noted that as the vegetation height increases so the coherence generally 
decreases. Hence this provided a means of classifying vegetation on the basis of its height; 

2. unlike other sources of decorrelation, the volume coherence is complex i.e. it has an associated 
phase. This phase adds to that of the underlying ground topography to provide what is called 
vegetation bias [Reigber 2000, Treuhaft 2000, Papathanassiou 2001]. This bias is a nuisance if 
ground mapping is the desired aim of the processing. However, this phase offset itself contains 
important information about the density and height of the vegetation. This, when combined with the 
coherence provides two parameters which are directly related to the vertical structure of the 
vegetation cover on the surface [Cloude 1998, Treuhaft 2000, Papathanassiou 2001, Yamada 2001]. 

 
The structure of vegetation is a key ecosystem factor that reflects biomass stock successions and growth 
dynamics. Parameters such as tree height, crown width, stand and canopy density and the underlying ground 
topography are direct inputs into biomass determination models and enable ecological process modelling, 
forest inventory and predictive modelling in hydrology. It should also be pointed out that global forest 
inventory and forest (above ground) biomass are currently critical missing parts in the global climate change 
debate. Hence there is a need for a reliable remote sensing technique to provide such information, and for 
developing alternate POLInSAR feature extraction algorithms such as that of [Yamada 2001].  
 
By operating at longer wavelengths such as L and P bands, Polarimetric Radar Interferometry [Cloude 1998, 
Papathanassiou 2001] is well suited to this problem as it provides penetration into vegetation cover and the 
ground and hence is inherently sensitive to volume effects and provides vertical structure information on a 
scale not easily available from optical or laser sensors. This technology promises to provide the basis for 
important new radar remote sensing instruments for global biomass and vegetation mapping [Mette 2002].  
 

3.2.1 POLARIMETRIC INTERFEROMETRIC COHERENCE OPTIMISATION PROCEDURE 
 
Polarimetric Radar Interferometry is a sensor technology measuring the full scattering matrix at either end of 
the baseline [Bamler 1998, Cloude 1998, Treuhaft 2000, Yamada 2001]. The polarimetric interferometric 
behaviour of a target is then fully described by the two scattering matrices, [S1] and [S2], and a six element 
complex target vector, k6, can be obtained by stacking target vectors from each polarimetric image, gathers 
the polarimetric interferometric information into a compact representation [Cloude 1998, Papathanassiou 
2001]. The corresponding 6×6 interferometric coherency matrix is given by: 
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This coherency matrix has the following structure: 
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The leading diagonal blocks are the conventional hermitian coherency matrices. In applications interest 
centres on exploitation of the off diagonal block [Ω12] which is the 3x3 complex polarimetric cross-
correlation matrix. As the target vector k6 follows a complex normal zero mean distribution [ ]( )6C ,0N Σ , 
with [ ]6Σ  its 6x6 covariance matrix, the 6x6 coherency matrix [Τ6] has then a complex Wishart distribution 

[ ]( )6C ,0W Σ , characterised by n degrees of freedom [Ferro-Famil 2001a, Ferro-Famil 2001b]. The 
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interferometric cross-correlation matrix, [Ω12], has complex diagonal elements, from which is computed the 
three polarimetric complex coherences as follows: 
 

 ),,( 321 γγγ  with 
*

i2i2
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ii
kkkk

kk
e~ i == φγγ   (11) 

 
where the operator < > stands for the averaging over n samples. Standard real coherence values are obtained 
from iγ , while the arguments correspond to the interferometric phase difference. It may be noted that the 
coherence defined in (10) is not invariant under a change of polarimetric basis. In general, coherence may be 
decomposed into multiplicative contributions as [Cloude 1998, Papathanassiou 2001]: 
 
 polartemporalspatialSNR

~.~.~.~~ γγγγγ =   (12) 
 
where the different terms indicate decorrelations related respectively to the back-scattered wave signal to 
noise ration, the spatial distribution of the illuminated scatterers, temporal variations between the 
acquisitions and finally the polarization state. Coherence images for the different polarization channels are 
displayed in Fig. 15.  
 

 
1γ  2γ  3γ  

  
0 0.5 10 0.5 10 0.5 1

 
 

Fig. 15: Interferometric coherences for the different polarimetric channels in the Pauli basis 
 
Range filtering and topographic phase removal procedures are applied to the interferometric data sets prior to 
the computation of the polarimetric interferometric coherences. The range filtering procedures corrects wave 
number shifts inherent to interferometric measurements. High coherence values are observed for surface 
areas in the co-polarized channels. Smooth surfaces, like the runway, scatter waves in the radar direction 
with a low signal to noise ratio, involving a low coherence in every polarization channel. In a general way, 
the maximum of the three coherence set corresponds to the first or second channel according to the dominant 
scattering mechanism, i.e. single or double bounce reflection respectively. Over forested areas, all three 
coherencies have low values. 
 
The off-diagonal complex polarimetric cross-correlation matrix [Ω12] contains low variance differential 
phase information related to the height separation of scattering centres. Rather than fusing the two data sets, 
Cloude and Papathanassiou [Cloude 1998, Papathanassiou 2001] have introduced polarization filters that 
minimize the variance of this phase information to locate as accurately as possible the position of the 
scattering centre. With full polarimetric interferometry it is then possible to select in the post processing the 
w vectors which maximize the coherence or minimize this phase variance as eigenvectors of a matrix formed 
from sub-matrices of [T6] and defined from (10) 
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where the corresponding eigenvalues are the three solutions to this optimisation problem and also the 
squared value of the optimum coherences. The vector corresponding to the maximum eigenvalue is the 
lowest phase variance solution but there is also important information in the remaining channels concerning 
the height and density of vegetation cover on the ground [Papathanassiou 1999 & 2000].  
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Fig. 16: Optimal interferometric coherences 

 
The results of the optimisation procedure presented in Fig. 16 show an enhanced contrast between the 
different optimal coherences. The first one has values close to one over the major part of the considered 
scene and intermediate values over forested areas and low SNR targets. The third one shows minimal values 
over decorrelating media such as forest and smooth surfaces and reaches high values for a limited amount of 
very coherent point scatterers. The complete optimised coherence set represents highly descriptive indicators 
of the polarimetric interferometric properties of each natural media, provides the basis for efficient height 
estimation, and great potential in biomass application [Hajnsek 2000] [Hajnsek 2003] and may then be used 
efficiently in a classification process [Ferro-Famil 2002].  
 

3.2.2 UNSUPERVISED CLASSIFICATION OF POLARIMETRIC INTERFEROMETRIC SAR DATA 
 
As mentioned in the former paragraph, the optimized coherency set offers a high degree of description of the 
coherent properties of a medium with respect to the polarization. The color-coded image presented in Fig. 17 
represents the joint information associated to the optimal coherencies. 
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Fig. 17: Color-coded image of the optimal coherence set 

 
The color-coding used for the joint representation of the optimal coherency set reveals particular behaviors 
of different types of natural medium under examination: 

• White areas indicate targets showing high coherence independently of the polarization. Such a 
behavior is characteristic of point scatterers and bare soils and corresponds, in the Oberpfaffenhofen 
scene, to buildings, fences and some vegetation free agricultural fields. 

• Green zones reveal the presence of a single dominant coherent mechanism within the resolution cell. 
Secondary coherences, associated to the red and blue channels have significantly lower values. Such 
zones correspond to surfaces with low SNR responses and some particular fields. 

• Forested areas, characterized by a dark green color have scattering features dominated by a single 
mechanism but with a very low coherence.  

• A comparison of the image of Fig. 17 with the polarimetric color-coded image shown in Fig. 14 
indicates that the distribution of strictly polarimetric and polarimetric interferometric features over 
surfaces and agricultural fields are significantly different. Coherence related information permits to 
discriminate particular buildings that cannot be separated from forested areas using only polarimetric 
data.  

• Over forested areas, the polarimetric color-coded image shows homogeneous zones, while 
interferometric data indicate that there exist large variations of the coherent scattering properties 
corresponding to clear-cuts and low-density forest.  

 
In order to isolate the polarization dependant part of the optimal coherencies, it is necessary to define their 
relative values as: 

 ∑= joptioptiopt γγγ /~  with 321
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optoptopt γγγ ≥≥   (15) 

The relative optimal coherence spectrum can be fully described by two parameters. We propose to define A1 
and A2 as characteristic indicators of the distribution of the coherency in the different optimized channels. 
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These parameters indicate relative amplitude variations between the different optimized channels. Similarly 
to the polarimetric case, the indicators A1 and A2 may be used to estimate the number of independent 
coherent scattering mechanisms from the optimization results. The different optimal coherence set 
configurations are represented and identified in Fig. 18. 
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Fig. 18: Discrimination of different optimal coherence set  
using A1 and A2 (left). Selection in the A1-A2 plane (right). 

 

The schematic on the left hand side of Fig. 18 separates the different optimal coherence set configurations in 
five classes. The diagonal classes correspond to configurations for which 32

~~
optopt γγ =  with different 

importance with respect to the largest normalized coherence 1
~

optγ . A column describes configurations with a 

constant proportionality ratio between 2
~

optγ  and 1
~

optγ . The real segmentation from A1 and A2 is realized over 
nine classes in order to improve the resulting clusters descriptivity and accuracy. Results of the normalized 
optimal coherence set classification are shown in Fig. 19. 
 

 

 

 
Fig. 19: Unsupervised identification of the number of coherent scattering mechanisms. 

 
Approximately four major classes arise from the identification of the optimal coherence set distribution. This 
unsupervised segmentation was also found to achieve a high degree of descriptivity on other scenes observed 
with different baselines [Ferro-Famil 2002]. This is due to the fact that it is based on indicators having a 
reduced sensitivity to decorrelation terms not related to the polarization.  
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The classification results are used to provide an adequate initialization to a segmentation merging 
polarimetric and interferometric analysis results. In this way, an unsupervised Maximum Likelihood 
classification is applied independently on the different types of basic scattering mechanisms identified with 
polarimetric data. Results for the Volume Diffusion and Surface Reflection classes are shown in Fig. 20. 
 

 
 

 
 

 
Fig. 20: Unsupervised polarimetric interferometric segmentation results over  

the Volume Diffusion basic class (left) and Surface Reflection class (right) 
 
Clusters resulting from the ML segmentation are assigned a color indicating their average coherence, ranging 
from black for low coherence to white for high coherence. Globally, polarimetric interferometric 
characteristics are efficiently segmented into compact clusters corresponding to scatterers with similar 
polarimetric and interferometric characteristics. 
 
The segmentation of the Volume Diffusion class successfully discriminates buildings, dense forest, sparse 
forest and clear-cuts. Surface Reflection areas are separated into segments according to both polarimetric and 
interferometric characteristics information. Details of the classification are displayed in Fig. 21 for two 
particular zones corresponding to the DLR buildings and forest parcels. 
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Polarimetric color coded image 

  
Optimal coherence set color coded image 

  
Volume diffusion classification results 

  
Surface reflection classification results 

  
Classification into three canonical mechanisms including 

double bounce reflection 
 

Fig. 21: Polarimetric Interferometric classification results over two areas. 
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The resulting images show significant improvements compared to the strictly polarimetric case. Clear-cuts 
sparse and dense forests are separated according to their coherent properties. Particular buildings having a 
polarimetric behavior similar to forest are discriminated. Surfaces are also better classified with more 
descriptive and more informative clusters.  
 
It is important to note the generality of this classification method. The parameters used in these studies were 
chosen so as to reduce the sensitivity of the whole algorithm to changes from one site to the other or for 
different measurement conditions. Its applications to data acquired over a different site with a different 
baseline led to equally satisfying results. 
 
 
3.3 POLARIMETRIC CLASSIFICATION PRESERVING SCATTERING CHARACTERISTICS 
 
Unlike other algorithms that classify pixels statistically and ignore their scattering characteristics, this new 
original approach [Lee 2004] not only uses a statistical classifier, but also preserves the purity of dominant 
polarimetric scattering properties for all pixels in a class.  
 
This algorithm uses a combination of a scattering model based decomposition developed by Freeman and 
Durden and the maximum likelihood classifier based on the complex Wishart distribution. The first step is to 
apply the Freeman and Durden decomposition to divide pixels into three scattering categories: surface 
scattering, volume scattering and double bounce scattering. To preserve the purity of scattering 
characteristics, pixels in a scattering category are restricted to be classified with other pixels in the same 
scattering category. An efficient and effective initialization scheme is also devised to initially merge clusters 
from many small clusters in each scattering category by applying a merge criterion developed based on the 
Wishart distance measure. Then the iterative Wishart classifier is applied. The stability in convergence is 
much superior to that of the previous algorithm using the Entropy/Anisotropy/Wishart classifier. Finally, an 
automated color rendering scheme is proposed based on the classes’ scattering category to code the pixels to 
resemble their natural color. This algorithm is also flexible and computationally efficient.  
 

3.3.1 SCATTERING MODEL BASED DECOMPOSITION 
 
The proposed classification algorithm is based on the Freeman and Durden [Freeman 1998] decomposition. 
They proposed an interesting and useful decomposition based on three simple scattering mechanisms. 
Volume scattering is modeled by a cloud of randomly oriented dipoles for tree canopy and vegetation. 
Double bounce scattering is realistically modeled by scattering from dihedrals, but allows for reflector 
surfaces with different dielectric properties, corresponding to trunk-ground interaction for forest, for 
example. Based on this model, the phase difference between HH and VV polarizations for double bounce 
scattering is not restricted to be 180° out of phase. The third component is modeled after Bragg scattering. 
Volume scattering component can de determined directly from 2

HVS . After subtracting the volume 
component, we ends up with three equations and four unknowns.  
 
The phase of *

VVHH SS  is used to determine the dominant scattering between surface and double bounce. 
Equations are solved to obtain the power of each scattering component. However, powers in surface and 
double bounce components can become negative, in which case, the negative powers are clipped to be zero, 
and the other two are adjusted proportionally for total power conservation. Only a few pixels require this 
adjustment in several examples that we have computed. 
 
One basic assumption of this scattering model is reflection symmetry. This limits the applicability of this 
algorithm to horizontal and flat areas. This algorithm, unlike Cloude and Pottier’s eigenvector based 
decomposition, is not rotationally invariant. Misinterpretation could be a problem, especially for manmade 
structures. For example, the return from a dihedral inclined near 45° will be interpreted as volume scattering 
from the canopy. For high relief terrain areas, surface scattering could be interpreted as volume scattering.  
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3.3.2 THE FREEMAN - WISHART CLASSIFICATION 
 
The proposed algorithm initially segments the polarimetric SAR images by applying the scattering 
decomposition of Freeman and Durden [Freeman 1998]. Pixels are divided into three scattering categories: 
double bounce, volume, and surface. This division is based on the dominance in scattering power of PDB, PV 
and PS for double bounce, volume, and surface scattering, respectively. An additional category of mixed 
scattering can be defined for pixels not clearly dominated by one of these three scattering mechanisms. For 
simplicity, we shall restrict to our development to three scattering categories. This scattering category label is 
fixed for each pixel thoughout the classification process to preserve the homogeneity of scattering 
characteristics. Only pixels with the same scattering category label can be grouped together as a class. This 
limitation ensures the preservation of scattering properties. Without this restriction, pixels of different 
scattering characteristics may classify into the same class. A flow chart is given in Fig. 22 showing the basic 
processing steps of this proposed algorithm. The entire unsupervised classification procedure is as follows : 
 
Initial Clustering 

1. Filter the POLSAR data using a filter [Lee 1999a] specifically designed for polarimetric SAR 
images, if the original data do not have sufficient averaging in the number of looks. All elements of 
the 3x3 covariance or coherence matrix should be filtered simultaneously to reduce speckle and 
retain resolution as much as possible. It has been shown that speckle filtering improves clustering 
[Lee 1999a]. However, excessive filtering would reduce spatial resolution.  

2. Decompose each pixel by Freeman and Durden decomposition, and compute PDB, PV and PS. Label 
each pixel by the dominant scattering mechanism as one of three scattering categories: Double 
Bounce (DB), Volume (V) and Surface (S). 

3. Divide the pixels of each category into 30 or more small clusters with approximately equal number 
of pixels based on PDB, PV or PS. For example, pixels in the surface category are divided by their PS 
value into 30 clusters. We have a total of 90 or more initial clusters. 

POLSAR 
Data 

Apply  
Freeman  
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Pixels in 
SURFACE 
Category 

Pixels in 
VOLUME 
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Pixels in  
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Divide into 30 
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Fig. 22: A flowchart of the proposed algorithm 
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Cluster Merging 
 

1. The averaged covariance matrix iC  for each cluster is computed.  
2. Within each category, the initial clusters are merged based on the between-cluster Wishart distance. 

Two clusters are merged if they have the shortest distance and are in the same scattering category.  
3. Merge the initial clusters to a desirable number of classes, Nd, required in the final classification.  

To prevent a class from growing too large and overwhelming the other classes, we limit the size of classes to 
not larger than 
 dmax N/N2N =   (17) 
 
N is the total number of pixels in the image. In addition, small clusters are merged first, and only clusters in 
the same scattering category can be merged to preserve the purity of scattering characteristics. In terrain 
classification, the number of pixels dominated by double bounce is much smaller than those with surface and 
volume scattering. For better separation of pixels in the double bounce category with smaller number of 
pixels, we limit the merging to at least three final clusters (classes) for each scattering category. 

 
Wishart Classification 
 

1. Compute the averaged covariance matrices from the Nd classes, and use these matrices as the class 
centers. All pixels are reclassified based on their Wishart distance measure from class centers. Pixels 
labeled as “DB”, “V” or “S” can only be assigned to the classes with the same label. This ensures the 
classes are homogeneous in scattering characteristics. For example, a double bounce dominated pixel 
will not be assigned to a surface scattering class even if the Wishart distance is the shortest. 

2. Iteratively apply the Wishart classifier for 2 to 4 iterations with the category restriction for better 
convergence. The convergence stability is much better than when using the initial clustering from the 
entropy/α decomposition [Lee 1999b]. 

 
Automated Color Rendering 
 
Color coding for each class is important for visual evaluation of classification results. The classes can be 
easily color-coded by their scattering label. After the final classification, the color selection for each class is 
automatically assigned: blue colors for the surface scattering classes, green colors for volume scattering 
classes, and red colors for double bounce classes. In the surface scattering classes, the class with highest 
power will be assigned color white to designate the near specular scattering class. The shade of each color is 
assigned in order of increasing brightness corresponding to the averaged power of the class within its 
category. For inland scenes, it may be preferable to color the surface classes with brown colors than with 
blue colors. 
 
It should be noted that identification of classes for terrain types based on scattering mechanisms has to be 
done carefully. For example, very rough surface can induce volume scattering in Freeman and Durden 
decomposition. Positive identification of terrain type may require additional contexture information and 
human reasoning.  
 

3.3.3 EXPERIMENTAL RESULTS 
 
Two examples are given in this section to illustrate the effectiveness of this classification algorithm. A 
NASA/JPL AIRSAR L-band data of San Francisco are used to show the applicability of this algorithm for 
general terrain classification using the original data. The original POLSAR image is displayed in Fig. 23a, 
with Pauli matrix components: |HH-VV|, |HV| and |HH+VV|, for the three composite colors: red, green and 
blue, respectively. The Freeman decomposition using |PDB|, |PV| and |PS| for red, green and blue is shown in 
Fig. 23b. The Freeman decomposition possesses similar characteristics to the Pauli-based decomposition, but 
Freeman decomposition provides a more realistic representation, because it uses scattering models with 
dielectric surfaces. 
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(a) Original image 

|HH-VV|, |HV|, |HH+VV| 
(b) Freeman decomposition 

|PDB|, |PV|, |PS| 
 

Fig. 23: The characteristics of NASA JPL POLSAR image of San Francisco 
 
After the decomposition, the powers PDB, PV and PS are computed for each pixel. Pixels are categorized as 
“DB”, “V” and “S” associated with the maximum power of these three scattering mechanisms. Fig. 24a 
shows the scattering category map with the red color for double bounce scattering, the green color for the 
volume scattering, and the blue color for the surface scattering. For each scattering category, we divide 
pixels into 30 clusters based on its power, and then the merge criterion is applied to merge into the pre-
selected number of 15 classes. The merged result is shown in Fig. 24b, each class is color coded with the 
color map in Fig. 25b. Without further applying the iteration of Wishart classifier, this classification result up 
to this step is much better than that obtained based on the H / α - Wishart classification [Lee 1999b]. This 
clearly shows the effectiveness of the merge criterion. 
 
After the cluster merge into 15 classes, the Wishart classifier was iteratively applied. The classification 
results before the iteration (Fig. 24b) looks very similar to those after the fourth iteration (Fig. 25a), 
indicating good convergence stability. Fig. 25b shows the automated color-coded label for the 15 classes. We 
have 9 classes with surface scattering because of the large ocean area in the image. As shown in Fig. 25a, 
details in the ocean areas are enhanced compared with previous classification algorithms. The surface class 
with the highest returns is colored white, showing pixels with near-specular scattering. This class includes 
the ocean surface at the top right area because of small incidence angles, and parts of the mountain and coast 
that are facing the radar look direction. We also observe many specular returns in the city blocks. Three 
volume classes detail volume scattering from trees and vegetation. The double bounce classes clearly show 
the street patterns associated with city blocks, and double bounce classes are also scattered through the park 
areas, probably associated with man-made structures and trunk-ground interactions. It is interesting to 
compare the classified result (Fig. 25a) with the original image (Fig. 23a). The classified image with 15 
classes reveals distinctively more terrain information than the original image. 
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(a) Three scattering categories (b) Clusters merged into 15 classes 
 

Fig. 24: Scattering categories and the initial clustering result 
 

 
(a) Classification map 

 

 
(b) Color-coded class label 

Fig. 25: Classification map and automated color rendering for classes 
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We also applied this algorithm to a DLR E-SAR L-Band image of Oberpfaffenhofen, Germany to 
demonstrate its effectiveness for a large and high resolution POLSAR image. The original data is in the 
single-look complex format. The Freeman decomposition is shown in Fig. 26a, which reveals airport 
runways in the middle with very low radar return, and a forested area in the upper right of the image. We 
also observe that a few buildings can be mistakenly identified as volume scattering, because they are not 
directly facing the radar, inducing higher HV returns. The scattering category map in Fig. 26b shows the 
surface scattering pixels in blue, the volume scattering pixels in green and the double bounce pixels in red. A 
large number of pixels are categorized as surface scattering, including the runways. However, noisy pixels of 
volume and double bounce are scattered among the surface pixels, probably due to the inhomogeneity of 
grass areas, and the low signal-to-noise ratio associated with very low radar returns. 
 

 

 

(a) Freeman decomposition 
|PDB|, |PV|, |PS| 

 

 

 
(b) Three scattering categories 

|DBL|, |VOL|, |ODD| 
 

Fig.32 The characteristics of DLR E-SAR image of Oberpfaffenhofen 
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The classification map of 16 classes is shown in Fig. 27a with the class label in Fig. 27b. Here, we applied a 
different color-coding for classes in the surface scattering category. We use the brown colors to better 
represent the nature of this image because of the absence of any large body of water. The vegetation and 
forest are well classified. The surface scattering classes show great distinction in separating runways, grass, 
and plowed fields. To examine in detail, we can show an area around the runway (Fig. 27b), that there exist 
five trihedrals in the triangle inside the runway which are clearly classified in the specular scattering class 
shown in white. It is well-known that trihedrals have the same polarimetric signature as specular scattering. 
Several double bounce reflectors have also been correctly classified near the triangle. Some of the buildings 
are not classified as double bounce scattering, because they are not aligned facing the radar, and do not 
induce double bounce returns. We also observed that fences facing the radar are classified as double bounce, 
but the section aligned at an angle is classified as volume scattering. To properly classify buildings, 
interferometric data may be required to separate buildings from vegetation. Buildings tend to have much 
higher interferometric coherence than vegetation.  
 
 

 
(a) Classification map 

 

 
(b) Color-coded class label 

 
Fig. 27: Classification map and automated color rendering for classes 

 
In this section was presented a very recent and robust classification algorithm that has better stability in 
convergence and preserves the homogeneous scattering mechanism of each class. This new algorithm is also 
flexible in choosing the number of classes, and preserving the spatial resolution in classification results. The 
initialization procedure is also efficient and quite different from that based on Cloude and Pottier’s 
decomposition [Lee 1999b][Pottier 2000][Ferro-Famil 2001a][Ferro-Famil 2001c]. The first step is to divide 
image pixels into three categories by surface, volume and even bounce scattering, by applying the Freeman 
and Durden decomposition [Freeman 1998]. Pixels in each category are classified independent of pixels in 
the other categories to preserve the purity of scattering characteristics for each class. A new and effective 
initialization scheme is also devised to initially merge clusters by applying a criterion developed based on the 
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Wishart distance measure [Lee 1999b]. Pixels are then iteratively classified by the Wishart classifier using 
the initial clusters as the training sets within each scattering category. For example, pixels in the double 
bounce category are not allowed to be reclassified into another category. In addition, in order to produce an 
informative classification map, class color selection is important, so we have developed a procedure that 
automatically colors the classification map using scattering characteristics, categorized as surface scattering, 
double bounce scattering, and volume scattering. 
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